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Abstract: 
             A new estimate produced by shrinking the initial estimate (such as the sample mean). 
For example, if two extreme mean values can be combined to create a more central mean value, 
repeating this for all means in the sample will adjust the sample mean which has shrunk towards 
the true population mean. And assuming the penalty parameter λ . And by using a different 
criterion represented by the presence of a penalty function penalizing the model, it will lead to 
the reduction as the parameters approach towards zero and get rid of the variables that have no 
effect on the model. We will explain in detail the four methods and then compare them to find 
out which one is more efficient for estimation. 
 Among the most important of these methods used is the method of the normal lasso, the 
adaptive lasso, the scad, and the method proposed by the researcher is the method of the 
Bayesian lasso - with an exponential natural Gama distribution. 
By conducting the simulation process for samples with sizes (250,200,150,75), the comparison 
was made by calculating the mean squared errors and the mean squared absolute errors, It was 
concluded that the adaptive Lasso method was better  Reduction methods: The Bayesian lasso 
method also showed good results. 
Introduction: 
Statistics is an important social science that contributes to collecting and analyzing data and 
extracting results in many areas of medical, agricultural, industrial and other life. One of the 
important topics in statistics is regression analysis, which is a method of analyzing the 
relationship between two or more variables, and because it is a multi-use statistical tool for 
analyzing data, estimating parameters, and representing the relationship between phenomena. 
Estimation or prediction is made through a probabilistic mathematical model. 
The problem of multicollinearity appears when there is a relationship between two or more 
explanatory variables, which leads to a different estimation of the logistic regression model 
due to the presence of some non-significant variables. Therefore, we need a method to estimate 
better model parameters through a comparison between the usual methods and the downscaling 
methods. 
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  Logistic Regression Model: 
           The probability function for the variable y is: 

ᴨ(𝑡) =  𝐿𝑜𝑔 
𝜋(𝑥)

1 − 𝜋(𝑥)
=  β +  x .  β 

  

𝜋 =  
ୣ୶୮ (ఉబାஒభ୶భାஒమ୶మା⋯ାஒ౦୶౦)

ଵ ା ୣ୶୮ (ఉబାஒభ୶భାஒమ୶మା⋯ାஒ౦୶౦)
         ;  1 ≤ i ≤ p 

 
        The logistic regression model is transformed using logarithm to get: 
 

log ൬
𝜋(𝑥)

1 +  𝜋(𝑥)
൰ =  

eఉబାஒభ୶భାஒమ୶మା⋯ାஒ౦୶౦

1 +  eఉబାஒభ୶భାஒమ୶మା⋯ାஒ౦୶౦
  

 

Log ൬
𝜋(𝑥)

1 +  𝜋(𝑥)
൰ =  

1

1 +  eି൫ఉబାஒభ୶భାஒమ୶మା⋯ାஒ౦୶౦൯
 

 
 Shrinkage Estimator:  

         A new estimate produced by shrinking the initial estimate (such as the sample mean). For 
example, if two extreme mean values can be combined to create a more central mean value, 
repeating this for all means in the sample will adjust the sample mean which has shrunk towards 
the true population mean. And assuming the penalty parameter λ . And by using a different 
criterion represented by the presence of a penalty function penalizing the model, it will lead to 
the reduction as the parameters approach towards zero and get rid of the variables that have no 
effect on the model. We will explain in detail the four methods and then compare them to find 
out which one is more efficient for estimation: 
Dozens of shrinkage estimates have been developed by different authors since Stein first 
introduced the idea in the 1950s. 
Among the most famous: 

• LASSO estimator. 
• Adaptive LASSO estimator. 
• SCAD Estimator 
• Bayesian LASSO estimator. 

 Simulation results  
Initial values were determined to conduct the simulation experiment for 34 variables, as 
shown in the two tables(1,2). 

Table (1) 
Generate initial variables 

 

Mean Sigma Explanatory variables Sizes of samples 

0 0.5 , 1 , 2 35 75 150 200 250 
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Table (2) 
The value of the initial parameters 

 
Value Variable Value Variable 
2.10 x20 5.00 constant 
2.60 x21 2.30 x1 
1.20 x22 1.50 x2 
1.40 x23 1.90 x3 
3.20 x24 3.10 x4 
2.40 x25 4.00 x5 
1.30 x26 3.50 x6 
1.90 x27 1.30 x7 
2.10 x28 3.20 x8 
1.90 x29 2.40 x9 
3.30 x30 1.80 x10 
4.20 x31 2.70 x11 
2.00 x32 3.40 x12 
3.80 x33 1.30 x13 
2.90 x34 2.70 x14 
4.60 x35 4.10 x15 

  3.20 x16 
  2.80 x17 
  1.10 x18 
  2.30 x19 

 
 Calculating the lambda value using the bootstrap method 

 
Table (3) 

 
results between the methods at a mean value of 0 and a variance of 0.5 with 1000 repetitions 

Methods  LASSO Ad LASSO SCAD Bayesian lasso 

N=75 

λ 0.0085 0.0001 0.0002 0.0004 

AIC 175.4669 490.1311 325.0953 297.2949 

MSE 0.270398 0.048241 0.162762 0.125242 

MAE 0.092065 0.028439 0.071334 0.056295 

N=150 

λ 0.0023 0.0001 0.0003 0.0987 

AIC 279.4449 953.7731 532.8052 793.856 

MSE 0.264317 0.029014 0.009596 0.056042 

MAE 0.090972 0.015927 0.016805 0.035691 
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Based on the ACI value, it turns out that the LASSO method is the best method at a 
sample size of 75, 150, 200, and 250. As for the MSE values, it turns out that the Bayesian 
lasso method is the best at a sample size of 200, the SCAD method is the best at a sample 
size of 150, and the ALASSO method is the best at a sample size of 150. Sample 75, 250 
based on the lowest value of the standard. 
  

 
Figure (1): methods for range with AIC at a sample size of 75 
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N=200 

λ 0.00024 0.00021 0.0003 0.0232 

AIC 357.1948 1381.544 718.831 1995.097 

MSE 0.265575 0.027157 0.122756 0.096973 

MAE 0.091111 0.01302 0.061877 0.041786 

N=250 

λ 0.0002 0.0004 0.0001 0.0049 

AIC 426.0112 1601.711 866.4647 3269.661 

MSE 0.263493 0.027692 0.143857 0.130391 

MAE 0.090764 0.014074 0.067031 0.042997 
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Figure (2): methods for range with AIC at a sample size of 150 

 

 
Figure (3): methods for range with AIC at a sample size of 200 
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Figure (4): methods for range with AIC at a sample size of 250 

 
Table (4) 

results between the methods at a mean value of 0 and a variance of 1 with 1000 repetitions 
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Methods  LASSO Ad LASSO SCAD Baysian lasso 

N=75 

λ 0.0018 0.0002 0.0001 0.0173 

AIC 180.2763 445.856 188.8781 122.3132 

MSE 0.260806 0.03148 0.210886 0.112894 

MAE 0.090076 0.017056 0.081274 0.051693 

N=150 

λ 0.00026 0.00024 0.0003 0.0005 

AIC 282.6247 638.8852 229.0194 147.7074 

MSE 0.25799 0.026802 0.044186 0.066576 

MAE 0.089878 0.012351 0.036886 0.040797 

N=200 

λ 0.00023 0.00027 0.0001 0.0076 

AIC 352.7347 827.1732 276.7883 561.8105 

MSE 0.258055 0.026709 0.008233 0.046591 

MAE 0.089819 0.012083 0.015505 0.033475 

N=250 

λ 0.0002 0.0003 0.0004 0.2972 

AIC 422.1967 1046.379 361.1637 1767.26 

MSE 0.259808 0.026552 0.051655 0.108029 

MAE 0.090197 0.011743 0.039933 0.041654 
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Based on the ACI value, it turns out that the Bayesian LASSO method is the best method 
at a sample size of 75, 150, followed by the SCAD method, the best method at a sample 
size of 200, 250. As for the MSE values, it shows that the ALASSO method is the best at 
a sample size of 75, and the SCAD method is the best at a sample size of 200, 250. The 
Bayesian lasso method is best at a sample size of 150, based on the lowest value of the 
standard. 

 

 
Figure (5):methods for range with AIC at a sample size of 75 

 

 
Figure (6):methods for range with AIC at a sample size of 150 
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Figure (7): methods for range with AIC at a sample size of 200 

 

 
Figure (8): methods for range with AIC at a sample size of 250 

 
Table (5) 

 
results between the methods at a mean value of 0 and a variance of 2 with 1000 repetitions 
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Methods  LASSO Ad LASSO SCAD BAYES 

N=75 

λ 0.0043 0.00015 0.00013 0.3333 

AIC 178.1558 429.8477 203.3409 136.6873 

MSE 0.266089 0.033355 0.262414 0.171661 



A COMPARISON OF SOME SHRINKAGE METHODS FOR LOGISTIC REGRESSION MODEL 

 
836 

 
Based on the ACI value, it turns out that the Bayesian LASSO method is the best method 
at a sample size of 75.150, followed by the LASSO method as the best method at a sample 
size of 200.250. As for the MSE values, it shows that the ALASSO method is the best at a 
sample size of 75 and the Bayesian lasso method is the best at a sample size of 150.200. 
The SCAD method is best at a sample size of 250, based on the lowest value of the 
standard. 
 

 
Figure(9): methods for range with AIC at a sample size of 75 
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MAE 0.090871 0.019229 0.090723 0.069262 

N=150 

λ 0.00024 0.00023 0.0001 0.0017 

AIC 278.5725 684.0223 312.171 301.7659 

MSE 0.264709 0.027831 0.102023 0.072028 

MAE 0.090939 0.01418 0.05636 0.044488 

N=200 

λ 0.00025 0.0002 0.0001 0.0040 

AIC 349.9496 1007.239 402.6138 1080.909 

MSE 0.262677 0.026525 0.055454 0.08675 

MAE 0.090524 0.011699 0.041397 0.042424 

N=250 

λ 0.00027 0.0002 0.00014 0.0215 

AIC 419.9862 1191.77 499.7032 2256.898 

MSE 0.263537 0.026948 0.000779 0.115463 

MAE 0.090841 0.012742 0.003857 0.043581 
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Figure (10):methods for range with AIC at a sample size of 150 

 
 
 

 

 
Figure (11): methods for range with AIC at a sample size of 200 
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Figure (12): methods for range with AIC at a sample size of 250 

 
 Conclusions And recommendations  

Conclusions :-  
1. It was concluded that the Bayesian lasso method is the best efficient and most 
accurate, in the second case of mean and variance values, and the possibility of applying 
it in the case of data following a linear or multiple distribution, logistic distribution. , 
normal distribution, exponential distribution, Poisson distribution,.... 
2. When calculating the value of λ (the shrinkage parameter) based on the 
bootstrap method, at a sample size of 75, we find that the Baysian LASSO method is 
better based on the lowest ACI value, while at other sample sizes the LASSO method was 
the best. 
3. From the simulation results, it appears that the value of the comparison 
standard MAE decreases as the sample size increases, while the value of MSE, AIC, and 
BIC increases as the sample size increases. 
 

4. From the simulation results, we note the efficiency of the Baysian LASSO 
method when choosing a mean of 0 and a variance of 1.2 for different samples 
compared to “when choosing a mean of 0 and a variance of 0.5.” 
 
Recommendations :-  

1. The possibility of applying downscaling methods to other studies in the field of 
health, agriculture, ... and other areas of life due to their accuracy and efficiency and the 
exclusion of variables that have no effect. 
2. Pay attention to how to calculate the value of the shrinkage parameter because 
it is one of the values that most affects the shrinkage methods. 
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3. Although the Bayesian Lasso method was not the best method, I nevertheless 
recommend studying the Bayesian method with each of the downscaling methods because 
I believe that the Bayesian method is one of the most important estimation methods. 
Connecting other downscaling methods such as Ridge, Adaptive Lasso to the Bayesian 
method will give Definitely better results. 
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